
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-C10P01R06-035

=
=
=
=
=
=

bñÅÉêéí=Ñêçã=íÜÉ=

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

qÉåíÜ=^ååì~ä=^Åèìáëáíáçå=
oÉëÉ~êÅÜ=póãéçëáìã=

^Åèìáëáíáçå=ã~å~ÖÉãÉåí=

Fewer Mistakes on the First Day: Architectural
Strategies and Their Impacts on Acquisition

Outcomes

Linda McCabe and Anthony Wicht
Massachusetts Institute of Technology

Published April 1, 2013

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 APR 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Fewer Mistakes on the First Day: Architectural Strategies and Their
Impacts on Acquisition Outcomes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood
Street,Lexington,MA,02420-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Reducing cost and development time, while preserving acceptable levels of performance, is a priority for
all government-sponsored complex product development. One avenue for improving outcomes is to use
architecting strategies to guide development decisions. Frequent examples are commonality,
interoperability, modularity, flexibility, extensibility robustness, openness, and adaptability. A second
avenue for improving outcomes is better acquisition strategies. The two are often considered in isolation.
This paper begins an examination of how the choice of architecting strategy affects the choice of acquisition
strategy, and vice versa. As a first step, the paper synthesizes existing literature and provides
straightforward definitions of each of the architecting strategies. As a second step, the paper maps each of
the defined architecting strategies against two common axes of acquisition design specifically openness to
competition and sensitivity to requirements change. The conclusions while tentative, show that increasing
attention to the interaction between how systems are designed and how they are acquired may have a
significant effect on the cost, schedule, and performance of complex product development.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research Program
of the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=i -

=

Preface & Acknowledgements

Welcome to our Tenth Annual Acquisition Research Symposium! We regret that this
year it will be a “paper only” event. The double whammy of sequestration and a continuing
resolution, with the attendant restrictions on travel and conferences, created too much
uncertainty to properly stage the event. We will miss the dialogue with our acquisition
colleagues and the opportunity for all our researchers to present their work. However, we
intend to simulate the symposium as best we can, and these Proceedings present an
opportunity for the papers to be published just as if they had been delivered. In any case, we
will have a rich store of papers to draw from for next year’s event scheduled for May 14–15,
2014!

Despite these temporary setbacks, our Acquisition Research Program (ARP) here at
the Naval Postgraduate School (NPS) continues at a normal pace. Since the ARP’s
founding in 2003, over 1,200 original research reports have been added to the acquisition
body of knowledge. We continue to add to that library, located online at
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has
engaged researchers at over 70 universities and other institutions, greatly enhancing the
diversity of thought brought to bear on the business activities of the DoD.

We generate this level of activity in three ways. First, we solicit research topics from
academia and other institutions through an annual Broad Agency Announcement,
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to
seek NPS faculty research supporting the interests of our program sponsors. Finally, we
serve as a “broker” to market specific research topics identified by our sponsors to NPS
graduate students. This three-pronged approach provides for a rich and broad diversity of
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition.
We are grateful to those of you who have contributed to our research program in the past
and encourage your future participation.

Unfortunately, what will be missing this year is the active participation and
networking that has been the hallmark of previous symposia. By purposely limiting
attendance to 350 people, we encourage just that. This forum remains unique in its effort to
bring scholars and practitioners together around acquisition research that is both relevant in
application and rigorous in method. It provides the opportunity to interact with many top DoD
acquisition officials and acquisition researchers. We encourage dialogue both in the formal
panel sessions and in the many opportunities we make available at meals, breaks, and the
day-ending socials. Many of our researchers use these occasions to establish new teaming
arrangements for future research work. Despite the fact that we will not be gathered
together to reap the above-listed benefits, the ARP will endeavor to stimulate this dialogue
through various means throughout the year as we interact with our researchers and DoD
officials.

Affordability remains a major focus in the DoD acquisition world and will no doubt get
even more attention as the sequestration outcomes unfold. It is a central tenet of the DoD’s
Better Buying Power initiatives, which continue to evolve as the DoD finds which of them
work and which do not. This suggests that research with a focus on affordability will be of
great interest to the DoD leadership in the year to come. Whether you’re a practitioner or
scholar, we invite you to participate in that research.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the ARP:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=ii -

=

 Office of the Under Secretary of Defense (Acquisition, Technology, &
Logistics)

 Director, Acquisition Career Management, ASN (RD&A)
 Program Executive Officer, SHIPS
 Commander, Naval Sea Systems Command
 Program Executive Officer, Integrated Warfare Systems
 Army Contracting Command, U.S. Army Materiel Command
 Office of the Assistant Secretary of the Air Force (Acquisition)
 Office of the Assistant Secretary of the Army (Acquisition, Logistics, &

Technology)
 Deputy Director, Acquisition Career Management, U.S. Army
 Office of Procurement and Assistance Management Headquarters,

Department of Energy
 Director, Defense Security Cooperation Agency
 Deputy Assistant Secretary of the Navy, Research, Development, Test, &

Evaluation
 Program Executive Officer, Tactical Aircraft
 Director, Office of Small Business Programs, Department of the Navy
 Director, Office of Acquisition Resources and Analysis (ARA)
 Deputy Assistant Secretary of the Navy, Acquisition & Procurement
 Director of Open Architecture, DASN (RDT&E)
 Program Executive Officer, Littoral Combat Ships

James B. Greene Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 1 -

=

Acquisition Management

Naval Ship Maintenance: An Analysis of the Dutch Shipbuilding Industry Using the
Knowledge Value Added, Systems Dynamics, and Integrated Risk Management
Methodologies

David N. Ford, Thomas J. Housel, and Johnathan C. Mun
Naval Postgraduate School

Time as an Independent Variable: A Tool to Drive Cost Out of and Efficiency Into
Major Acquisition Programs

J. David Patterson
National Defense Business Institute, University of Tennessee

The Impact of Globalization on the U.S. Defense Industry

Jacques S. Gansler and William Lucyshyn
University of Maryland

Bottleneck Analysis on the DoD Pre-Milestone B Acquisition Processes

Danielle Worger and Teresa Wu, Arizona State University
Eugene Rex Jalao, Arizona State University and University of the Philippines
Christopher Auger, Lars Baldus, Brian Yoshimoto, J. Robert Wirthlin, and John
Colombi, The Air Force Institute of Technology

Software Acquisition Patterns of Failure and How to Recognize Them

Lisa Brownsword, Cecilia Albert, Patrick Place, and David Carney
Carnegie Mellon University

Fewer Mistakes on the First Day: Architectural Strategies and Their Impacts on
Acquisition Outcomes

Linda McCabe and Anthony Wicht
Massachusetts Institute of Technology

The Joint Program Dilemma: Analyzing the Pervasive Role That Social Dilemmas Play
in Undermining Acquisition Success

Andrew P. Moore, William E. Novak, Julie B. Cohen, Jay D. Marchetti, and Matthew
L. Collins
Software Engineering Institute, Carnegie Mellon University

Acquisition Risks in a World of Joint Capabilities: A Study of Interdependency
Complexity

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 2 -

=

Mary Maureen Brown
University of North Carolina Charlotte

Leveraging Structural Characteristics of Interdependent Networks to Model Non-
Linear Cascading Risks

Anita Raja, Mohammad Rashedul Hasan, and Shalini Rajanna
University of North Carolina at Charlotte
Ansaf Salleb-Aoussi, Columbia University, Center for Computational Learning
Systems

Lexical Link Analysis Application: Improving Web Service to Acquisition Visibility
Portal

Ying Zhao, Shelley Gallup, and Douglas MacKinnon
Naval Postgraduate School

Capturing Creative Program Management Best Practices

Brandon Keller and J. Robert Wirthlin
Air Force Institute of Technology

The RITE Approach to Agile Acquisition

Timothy Boyce, Iva Sherman, and Nicholas Roussel
Space and Naval Warfare Systems Center Pacific

Challenge-Based Acquisition: Stimulating Innovative Solutions Faster and Cheaper
by Asking the Right Questions

Richard Weatherly, Virginia Wydler, Matthew D. Way, Scott Anderson, and Michael
Arendt
MITRE Corporation

Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration
Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change

Kathryn Aten and John T. Dillard
Naval Postgraduate School

A Comparative Assessment of the Navy’s Future Naval Capabilities (FNC) Process
and Joint Staff Capability Gap Assessment Process as Related to Pacific Command’s
(PACOM) Integrated Priority List Submission

Jaime Frittman, Sibel McGee, and John Yuhas, Analytic Services, Inc.
Ansaf Salleb-Aoussi, Columbia University

Enabling Design for Affordability: An Epoch-Era Analysis Approach

Michael A. Schaffner, Marcus Wu Shihong, Adam M. Ross, and Donna H. Rhodes
Massachusetts Institute of Technology

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 3 -

=

Measuring Dynamic Knowledge and Performance at the Tactical Edges of
Organizations: Assessing Acquisition Workforce Quality

Mark E. Nissen
Naval Postgraduate School

Outcome-Focused Market Intelligence: Extracting Better Value and Effectiveness
From Strategic Sourcing

Timothy G. Hawkins, Naval Postgraduate School
Michael E. Knipper, 771 Enterprise Sourcing Squadron USAF
Timothy S. Reed, Beyond Optimal Strategic Solutions

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 79 -

=

Fewer Mistakes on the First Day: Architectural Strategies
and Their Impacts on Acquisition Outcomes

Linda McCabe—McCabe is a member of the technical staff in the Airborne Networks Group at MIT
Lincoln Laboratory. Since joining the laboratory in 2005, McCabe has participated in a wide range of
research programs from developing new methods to evaluating advanced tactical networks to
planning and executing airborne networking field experiments. More recently, she has been involved
in an evaluation of technology transfer, identifying both positive and negative lessons learned from a
wide range of programs. Prior to joining Lincoln Laboratory, McCabe led a division at SAIC that
focused on wargame design and execution. McCabe holds a BA in international relations from Boston
University and an MA in security policy from The George Washington University.

Anthony C. Wicht—Mr. Wicht completed a Master of Science in Aeronautics and Astronautics at
Massachusetts Institute of Technology (MIT) in 2011. He also holds a Bachelor of Laws degree and a
Bachelor of Engineering degree with First Class Honours from the University of New South Wales,
Australia. His research at MIT focused on architecting complex engineering systems like space
infrastructure. Prior to attending MIT, Mr. Wicht worked as a project finance lawyer at a major
Australian law firm on legal aspects of financing and constructing large engineering projects. He is a
former president of the National Space Society of Australia and is co-chair of the Australian Space
Development Conference series.

Abstract
Reducing cost and development time, while preserving acceptable levels of performance, is a
priority for all government-sponsored complex product development. One avenue for
improving outcomes is to use architecting strategies to guide development decisions.
Frequent examples are commonality, interoperability, modularity, flexibility, extensibility,
robustness, openness, and adaptability. A second avenue for improving outcomes is better
acquisition strategies. The two are often considered in isolation. This paper begins an
examination of how the choice of architecting strategy affects the choice of acquisition
strategy, and vice versa.

As a first step, the paper synthesizes existing literature and provides straightforward
definitions of each of the architecting strategies. As a second step, the paper maps each of
the defined architecting strategies against two common axes of acquisition design,
specifically openness to competition and sensitivity to requirements change. The conclusions,
while tentative, show that increasing attention to the interaction between how systems are
designed and how they are acquired may have a significant effect on the cost, schedule, and
performance of complex product development.

Introduction

Reducing cost and development time, while preserving acceptable levels of
performance, is a priority for complex product development in both military and civilian
systems. One avenue for improving development is to use particular architecting strategies
to guide high-level development decisions. These strategies reflect the priorities that the
customer places on different aspects of the product. Different strategies lead to different
design decisions and ultimately different outcomes. For example, developments based on
the “robustness” strategy might trade high performance under specific conditions for
acceptable performance over a range of conditions. This paper considers common,
modular, open, flexible, adaptable, robust, extensible, and interoperable architecting

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 80 -

=

strategies. Many of these strategies have at one time or another been exhorted as the
solution to acquiring complex products.1

However, there appears to be a disconnect between the use of these strategies and
their effect on complex product development, particularly in the government sphere. New
architecting strategies are encouraged at the highest levels, but the cost of acquiring new
complex systems continues to climb (Berteau et al., 2010; Peters, 2009; Moore, 2011).

We observed two factors that we hypothesized to be likely contributors to the lack of
impact of these architecting strategies on project acquisition costs. The first factor is a lack
of effective communication about what the architecting strategies mean, caused by a
scarcity of definitions for the strategies, and compounded by the application of the strategies
in engineering disciplines far removed from where the terms were first used. The second
factor is a universal application of the strategies to all acquisitions, rather than to just those
acquisitions where the strategy would be particularly relevant and helpful.

The existing literature does not provide sufficient guidance on the architecting
strategies, or the types of product acquisitions where they should be applied. The Defense
Acquisition University (DAU) provides an excellent start, with brief definitions of many of the
important terms in its Glossary of Defense Acquisition Acronyms and Terms (Hagan, 2009),
although flexibility, adaptability, and extensibility are not defined. A symposium paper from
the MIT Engineering Systems Division discussing architecting strategies generally is also
useful, but does not specifically define the strategies and the differences between them
(Crawley et al., 2004). The DoD dictionary, which consolidates definitions provided in
doctrine documents, defines only commonality (Joint Chiefs of Staff, 2010). Finally, even
within the top 100 articles found doing a Google Scholar search for articles containing the
words robust, flexible, common, interoperable, and extensible, none sets out definitions for
these terms. Although these searches may not be exhaustive, they represent a much more
detailed search for definitions than a professional is typically able to conduct when
investigating architectural options.

The specific objectives of this paper, therefore, are twofold. First, the paper aims to
synthesize existing definitions of the design strategies into a single definition. This synthesis
will provide a starting point for discussion of what the design strategies mean. Extensive
comment and discussion about these definitions is anticipated, but consolidating all
definitions into a single document and posing possible definitions for discussion is a
prerequisite for this discussion, and represents an advance on the existing literature.

Second, the paper aims to provide a coarse analysis of the acquisition scenarios to
which each strategy is well suited. Such an analysis makes the broad point that different
acquisition scenarios merit different design strategies, and not one design strategy is a
panacea for all acquisition challenges. The analysis also makes more specific findings about
the regions of suitability of each design strategy, in terms of certainty of requirements and
openness to competition.

In Section I, the paper examines the literature in detail. It presents a number of
observations about the potential for confusion in the existing literature, and also highlights

1 Commonality: “Commonality is the key to affordability” (DoD, 2013). Interoperability: “It is DOD
Policy that . . . Department of Defense pursue materiel interoperability with allies and coalition
partners” (Carter, 2009). Open Systems Architectures: “[Acquisition Professionals within DOD will ...]
require open systems architectures” (Carter, 2010). “Program managers shall employ MOSA
[Modular Open Systems Approach] to design for affordable change, enable evolutionary acquisition,
and rapidly field affordable systems that are interoperable in the joint battle space” (DoD, 2008).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 81 -

=

how reference is frequently made to the design strategies without an accompanying
explanation of what is meant by those strategies. In Section II, standard definitions for each
of the chosen architecting strategies (common, modular, open, flexible, adaptable, robust,
extensible, and interoperable, referred to as the “Eight Strategies”) are proposed. Each
definition is illustrated with examples from previous government acquisitions. Section III
presents an analysis of the newly defined design strategies against two important
acquisition parameters: (1) certainty of requirements, and (2) number of organizations
involved.

Finally, Section IV concludes the paper and presents suggestions for further work in
this area.

The Existing Literature Confuses More Than It Clarifies

If architectural strategies are to be used for complex government acquisition projects,
there is a need for all involved to understand the meaning of these strategies. This section
of the paper reviews the existing definitions of architectural strategies and considers
whether the definitions are consistent and easy to find. Definitions that are consistent and
easy to find would be expected as a prerequisite to effectively using the architectural design
strategies across government acquisitions.

At the outset, it is important to be precise with terminology used in this paper. An
architecture is “an abstract description of the entities of a system and the relationships
between those entities” (Crawley et al., 2004). Put another way, architecture is “the
arrangement of the functional elements into physical blocks” (Ulrich & Eppinger, 2008).
Architecture is the underlying concept of how a complex system is brought together, the
process of relating form to function in order to create value where value is benefit at cost.

Different architectures have different properties. When the architecture clearly brings
about a certain property in the final system, the final system is often referred to as having a
“property-architecture.” For example, if the architecture is such that the final system is
robust, then the system is described as having a robust architecture. We refer to the process
of designing an architecture for a desired result as an architecting strategy.

Surprisingly, we were able to find only a small number of references that presented
and compared all or most of the architecting strategies. De Weck, Ross, and Rhodes (2012)
investigated most of the architecting strategies presented in this paper but were concerned
with them as “system properties” rather than architecting strategies. Their paper also
focused on the interrelationships between the strategies rather than describing the
strategies themselves. The symposium paper by the MIT Engineering Systems Division, The
Influence of Architecture in Engineering Systems (Crawley et al., 2004), investigated
definition in more detail. The paper described how architecture influences the properties of
created systems, resulting in robustness, adaptability, flexibility, safety, and scalability.
However, Crawley et al. focused on the importance of architecture rather than detailing
different outcomes from the architecting process. Fricke and Schultz (2005) presented an
excellent side-by-side view of adaptability, agility, flexibility, and robustness, but they did not
extend their analysis beyond these “changeable” architectures.

Finding other papers that compared architecting approaches proved difficult. A
Google Scholar search for articles containing the words robust, flexible, common,
interoperable, and extensible gives a surprising number of results—13,800—but no paper in
the top 100 sets out definitions for these terms. In other cases, papers defined a few of the
terms in domain-specific areas. For example, Ferguson, Siddiqi, Lewis, and de Weck (2007)
examined flexible and reconfigurable systems in product design, but their definitions would

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 82 -

=

require thought and interpretation before application to another area, for example,
information architectures.

Nor is there assistance from the key textbooks in the area. The Art of System
Architecting mentions some of these architecting strategies but does not contrast them or
provide extensive detail. In Architecture and Principles of System Engineering, Dickerson
and Mavris (2010) did not present definitions for any of the Eight Strategies. However, the
terms themselves are mentioned, in some cases, in the sense we use them (“interoperable
and cost effective military systems” [Dickerson & Mavris, 2010, p. 148], “methods and
techniques to … design for robustness relative to uncertain operational environments” [p.
313]), and in other cases in very different contexts (for example, openness is used in the
context of stakeholder discussions, and flexibility in the context of “development flexibility,
such as environmental limitations or regulatory standards”).

In the government context, the situation does not improve greatly. A complete set of
definitions does not exist. Of the Eight Strategies, the DoD dictionary, which consolidates
definitions provided in doctrine documents, defines only commonality (Joint Chiefs of Staff,
2010). The DAU provides brief definitions of many of the important terms in its Glossary of
Defense Acquisition Acronyms and Terms, although flexibility, adaptability, and extensibility
are not defined (Hagan, 2009). Further, some of the terms are narrowly defined. For
example, module is used only in the context of software architectures. The DAU’s online
“Terms and Definitions” (2013) defines three out of the Eight Strategies, and defines the
substance of extensibility, though referring to it as scalability.

Compounding the problem, the same term is used in the same community to mean
different things. Defense Directive 5000.01 (Wolfowitz, 2007) emphasizes five key
acquisition policies, one of which is flexibility. Dickerson and Mavris (2010) summarized
flexibility in this context as the “need to structure each acquisition program according to the
set of strategies, documentation, reviews, and phases that make sense for this program” (p.
290). This is a different definition of flexibility than used by system architects in describing
the properties of their systems. However, there are some bright spots in the government
landscape. The push towards a “modular, open-systems architecture” by the Open Systems
Joint Task Force (2004), shows significant development of the modular and open systems
concepts through tens of pages of principles, definitions, and examples.

Definitional confusion is not entirely due to a deficiency in the literature, however.
The architecting strategies are often mentioned in the same breath but in fact are concerned
with quite dissimilar things. Adaptability, flexibility, and robustness are characteristics of an
end-product that describes how the product interacts with its environment, especially as that
environment changes. Extensibility describes how the product is able to improve over time.
Interoperable describes how the product interacts with other products in the operations
phase. Commonality describes similarities with other products, usually in the development
and operations phases. Modularity describes the physical structure of the product.
Openness describes the process of acquiring the product. Therefore, it is not surprising that
a single paper does not cover the range of architecting strategies, because they are quite
different.

Further, the architectural strategies inter-relate. Modularity emphasizes simple, well-
understood interfaces and so enables commonality (through reuse of existing products) and
openness (by more easily tying together the contributions of different participants).
Interoperable architectures require knowledge of the systems that interoperate, implying
some level of openness. Interoperable architectures also work because of some degree of
commonality, usually in the patterns of information exchange, so an interoperable

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 83 -

=

architecture could also be described as having, for example, a common communications
protocol.

The difficulties with using the existing literature to define architecting strategies can
therefore be summarized as follows:

 No single reference presents and compares all the architecting strategies.

 Several key references refer to architecting strategies without defining them,
assuming that they are well understood.

 Where definitions are provided, they are often domain-specific.

 The words chosen for the architecting strategies are sometimes used by the
same communities, with different meanings.

 The strategies interrelate, and multiple architecting strategies are often used
to achieve a given result.

Although this may appear a formidable list of obstacles, clear, widely available
definitions of the architecting strategies will assist with resolving all of these difficulties. In
the defense acquisition context, referring to the definitions of these strategies when
proposing them as mandatory considerations in acquisition would improve communication of
the desired outcomes. There is a precedent for such definitional foundation in the
commonality literature. The RAND Corporation produced a report containing a standard
commonality lexicon (Held, Lewis, & Newsome, 2007). A similar report examining the
definitions described in Section II, with more detail and rigor, presents a possible solution to
the current confusion in the literature.

Defining Architectural Strategies

In an attempt to remedy some of the confusion outlined in the previous section, this
section provides an overview of architecting strategy definitions from the engineering
literature, a relevant DoD example of each definition, a discussion of the definition as it
relates to process versus architecture, and, because these strategies are often painted as a
panacea for all new-product development ills, a description of the possible downsides of the
approach. In the definitions that follow, we begin by discussing a simple example of each
architecture strategy. Because low complexity examples are rare in the real world, we also
discuss the application of each strategy to a more complex, and where possible, “system of
systems” example.

Flexible Architectures

A flexible architecture is one that is easily modified to respond to changing
requirements (Crawleyet al., 2004; Fricke & Schultz, 2005; Ferguson et al., 2007). The
modification requires work to be done on the system. For example, an architecture that
allows different external stores (often referred to as pods) to be loaded on military aircraft to
provide different functionality for different missions would be described as a flexible
architecture. External stores can provide numerous functions, including—but not limited to—
weapons, additional fuel, electronic counter measures (ECMs), communications, and
sensors. A more complex example is the ability to load different software onto pre-defined
hardware, such as is expected from software programmable radios. Loading new software
changes the functionality of the radio to suit the operating environment. In each case, the
designers considered that easily changing the system performance was important, and
allowance for such changes was built into the architecture. The architectural choices permit
product flexibility and therefore are described as a flexible architecture. The benefit of a
flexible architecture is that a particular design continues to perform even as the environment

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 84 -

=

changes. For example, an entirely new airplane is not required simply because the range
requirements for a certain mission exceed the internal fuel storage capacity of the aircraft.

Flexibility is often associated with modularity if the flexibility arises through the
swapping of modular parts (for example, weapons).2 Flexibility need not be dependent on a
modular architecture, however. A flexible system could allow for software changes to be
inserted without even unpacking the part from the case, as in the case of the Block III High
Speed Anti-Radiation Missile (HARM), a system designed to destroy radar equipped air
defenses. The Block II HARM has its own software operating system, which can be
upgraded in the field—and in the crate—to redefine its flight profile, its function, and how it
interacts with the targeting system onboard the aircraft system.

Flexibility is not always a positive attribute, however, as there is a price associated
with designing systems to be flexible. Flexibility should be used only where uncertainty of
requirements for the system means that the strategy is required. Crawley et al. (2004) put
this succinctly:

In some cases, flexibility comes at a price—namely, efficiency in some form.
Flexibility may require over-design, generic components, extra interfaces, or
changeover time. A less flexible system might have more focused
components, fewer interfaces, and no loss due to changeover.

Flexibility can in fact increase overall lifetime costs of a system, especially if the
product lifetime is shorter than expected, due to the significant up-front cost. As the Army’s
Future Combat System program office pointed out in its reaction to a GAO (2009) report,

Because of the significant amount of new technology development and the
emphasis on laying a good, flexible architecture foundation, development
effort/costs may not follow typical expenditure rates as other projects, and a
larger percentage will be needed in the early stages of the program.

Adaptable Architectures

Fricke and Schultz (2005) described adaptable systems as systems that “deliver their
intended functionality under varying operating conditions through changing themselves.” In
other words, an adaptable architecture modifies itself to meet a changing environment. An
example from the commercial world is commercial power generation, which automatically
brings additional power production online during high demand periods. In the defense
context, an example of an adaptable system is radar. Most radar systems are able to
change their receiver gain automatically in order to filter out noise generated by jamming.

The difference between flexible and adaptable is subtle, and in the experience of the
authors, those using the terms do not always grasp the difference. In particular, either term
is often used as a catch all for the meaning of both terms. The difference between adaptable
and flexible architectures has important cost implications for DoD projects. Adaptability
usually places significantly greater demands on a system than flexibility but may be
warranted in some cases, for example, where human intervention is impossible3 (such as a
pacemaker), or where human reaction times are too slow (for example, the ACESII ejection
seat, which automatically changes its ejection profile based on the altitude and airspeed of
the aircraft at the time of ejection).

2 De Weck, Ross, and Rhodes (2012) showed this as a strong link in their diagram of “ility co-
occurrence in the literature.”
3 In the DoD context, adaptability in the context of situations where human intervention is impossible
is tied to autonomy, which is commonly not acceptable given the high stakes involved in warfare and
the unwillingness to take the human decision-maker out of the loop.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 85 -

=

There is also overlap with other terminology. An open architecting process could be
described as a flexible architecture because it allows new design implementations to be
introduced over time. An “extensible” architecture can also be changed over time and
therefore be characterized as “flexible,” albeit at the most inflexible end of flexible.4 Finally, a
modular approach enables flexibility but is not enough in itself to guarantee flexibility.5 To
conceptualize this, imagine a modular system, such as the aircraft with weapons discussed
previously, where the weapons racks were welded to the aircraft frame. The design is no
less modular, but the architecture is no longer flexible.

Robust Architectures

A robust architecture is one that is able to meet its performance specification over a
wide range of, often unanticipated, external conditions and still perform well (Hagan, 2009;
Crawley et al., 2004; Fricke & Schultz, 2005). This design strategy is often used when there
is high uncertainty over the future performance requirements of a product (Thomke, 1997),
or when the system itself is complex and not well understood (Crawley et al., 2004). The
design approaches to achieve robustness are not well understood (Crawley et al., 2004),
particularly in the area of software design. The benefit of a robust architecture is that the
product keeps performing even as the external environment changes. Robustness may be
preferred to flexibility or adaptability for a number of reasons. Robustness may be a lower
cost approach because the system never needs to change. Robustness may also be
preferred for situations where the range of environmental challenges is not well known. An
example of a robust architecture from the defense context is the design of the Link-16
protocol, which assumed that message traffic might get lost in the dynamic airborne
environment. Therefore, it built significant redundancy into its message traffic, sending
positional data and other messages multiple times per second to ensure delivery. A classic
example of a robust architecture is the nuclear command and control architecture. Built into
mountains and underground silos, and designed to operate in a post-nuclear attack radiation
environment, robustness was clearly a main design criteria.

System designs described as “robust” are more widely used than the strict definition
above would allow. Some consider a robust design to be anything that copes with
environmental changes and continues to perform. Robustness is also used as a synonym
for survivability, to indicate continued performance when components of the system are
damaged. Finally, some members of the defense community (perhaps showing some
pessimism with the acquisitions process) use a robust design to mean one that actually
works as designed under field conditions, using it interchangeably with “ruggedized”
(Hawkes, 2013; Sherborne Sensors, 2013). To add to the confusion, Thomke’s (1997)
paper, which contains excellent case studies into what we would call “robustness” in the
design stage, describes the cases as “design flexibility.”

It is obvious that a robust architecture will usually be more expensive upfront than a
conventional architecture. The greater span of requirements often necessitates more time
preparing better designs or more cost in manufacturing, as more exotic materials are used.
Therefore, as with any architectural design choice, there is a cost-benefit tradeoff for a
robust design.

4 For clarity, systems that are intended to be changed back and forth many times are usually referred
to as “flexible and reconfigurable” (Ferguson et al., 2007).
5 A simple illustration of the link between flexibility and modularity can be seen with a Google Scholar
search for (“flexible and modular” or “modular and flexible”), which yields ten times more results than
(“flexible and robust” or “robust and flexible”).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 86 -

=

Open Architectures

Open architectures are becoming increasingly popular due to their prevalence, and
success, in the software industry. Silver (2010) examined the history of open architectures in
detail. An open architecture is one where the necessary information to design a part of the
system is made accessible to the public or a wide group of possible designers. Hagan
(2009) goes into more detail, defining an open system as

a system that implements specifications maintained by an open, public
consensus process for interfaces, services, and support formats, to enable
properly engineered components to be utilized across a wide range of
systems with minimal change, to interoperate with other components on local
and remote systems, and to interact with users in a manner that facilitates
portability.

The essence of these definitions is that open architectures allow any interested
organizations to participate in the design and development of parts of the system. This is not
a new idea, but the fact that individuals anywhere, equipped with only a computer, can
contribute to open software development, combined with the increased importance of
software to complex projects, has meant that the pool of potential contributors to open
architectures has widened over recent decades. The benefit of an open architecture is that
better solutions can sometimes be found because more organizations have the chance to
examine the problem and propose design solutions. The increased competition also has the
potential to lower costs.

An example from the defense context, though not yet officially sanctioned, is the
growth of “Tactical iPhone apps” that have been developed both by soldiers and by small
companies (Tactical Nav, 2013). These are built using the open interface exposed to
applications developers by Apple.

Openness is generally well understood and difficult to confuse with any of the other
terms presented here. It is important to recognize that openness is more concerned with the
process of development than the attributes of the end-state of the product. However, the
system architect is concerned with process as well as end-state because the development
process affects affordability by changing development cost. Therefore, in developing and
comparing architectural strategies, it is valid to consider strategies that affect process.

Open architectures have some significant drawbacks that are sometimes overlooked
in the current enthusiasm for their use. Open architectures present coordination challenges
for the government customer who must ensure that the products developed on the open
market can interface to produce a usable end product. The broad dissemination of
information about the end product may also present security concerns.

Common Architectures

A common architecture focuses on reuse of proven systems, or the design of
platforms for later reuse (Wicht, 2011). With relatively simple systems, the key benefit is cost
reduction, as much of the work from the first system is reused. Reusing systems and/or
system components also decreases the development time associated with the system. With
more complex systems, other benefits also become obvious: reliability increases because
proven designs are reused and each part is used more often; maintenance and logistics are
more affordable because there are fewer unique parts; less training is required as operators
are familiar with previous instances of the product.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 87 -

=

Examples from a DoD perspective include the Joint Strike Fighter (JSF), which was
designed in three variants with as many common parts as possible.6 Another example is the
M61A1 20 mm cannon. This automatic weapon, often called the Vulcan, has been used in
numerous Air Force aircraft (F-104, F-105, F-106, F-4, F-14, F-15, F-16, F-18, A-7, F-111D,
and most recently the F-22), the Navy PHALANX system, and the Army C-RAM.

Commonality is straightforward in principle; however, it has significant overlap with
modularity and interoperability. In a modular system, multiple common modules are often
used to incrementally increase performance. The resulting system has strategies of both
modularity and commonality. For example, some launch vehicles have a modular
configuration with respect to the number of solid rocket boosters clustered around the
vehicle core. For example, the Atlas V launch vehicle can have from zero to five solid rocket
boosters attached to the core, depending on the particular payload and orbit of a launch.7

Modularity also makes reuse easier and therefore enables commonality at a lower
cost. Software modules are the canonical example of this, because good practice software
writing encapsulates particular software tasks into modules, with defined inputs and outputs.
If that functionality is required in a subsequent development, the module can be easily
transplanted into the new context. Commonality and interoperability are also blurred.
Interoperability generally requires a common (or “standardized”) interface. Therefore, the
two systems are interoperable, or they share a common interface. The outcome is the same,
but the terminology could be used differently. We suggest that if commonality is used solely
for standardizing communications protocols for interoperability, the guiding strategy is
interoperability. However, if the rationale is life-cycle cost savings from common design of
terminals, hardware, or training procedures, then “commonality” is probably more
appropriate.

Commonality does not always produce benefits. For example, if requirements
change and a new system is required, the additional up-front investment in designing a
common system is lost. In some instances, the cost of designing and enforcing a common
system outweighs the life-cycle cost savings of having the common system. This may be the
case with the F-35, which has had “continuing manufacturing inefficiencies, parts problems,
and technical changes [that] indicate that the aircraft’s design and production processes
may lack the maturity needed to efficiently produce aircraft at planned rates” (GAO, 2011).
The program was restructured in 2011, triggering a Nunn-McCurdy unit-cost breach.
Performance is often penalized with a common system, with both systems having to share a
system that suits neither of them perfectly.

Modular Architectures

To deal with complexity in systems, the idea of modularity is as old as engineering
itself. Modularity allows a complex problem to be tackled in pieces. At its most basic, a
modular architecture focuses on dividing the form of the system to reflect the functions of
the system. This means that the system can be divided into chunks, each of which performs
a distinct function. Baldwin and Clark (1999) had an elegant definition: “A module is a unit
whose structural elements are powerfully connected among themselves and weakly
connected to elements in other units.” This design strategy tends to produce “tidier” designs

6 “The JSF program goals are to develop and field a family of stealthy strike fighter aircraft for the
Navy, Air Force, Marine Corps, and U.S. allies, with maximum commonality to minimize costs” (GAO,
2009).
7 United Launch Alliance described the Atlas V under the heading “Modular System for Maximum
Flexibility and Reliability” as using “a standard common core booster™ (CCB), up to five strap-on
solid rocket boosters (SRB)” (United Launch Alliance, 2012).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 88 -

=

with associated benefits to reliability and re-work cost. Modularity standardizes interfaces
and minimizes the amount of information that needs to travel across those interfaces. More
advanced modularity defines standard interfaces between aspects of the form of the system,
and allows those pieces of form to be swapped out to produce different functions. This
allows the product to perform across a greater range of external environments and to be
upgraded more quickly and cheaply. For example, the computer and USB-peripheral
architecture now used on personal computers is a modular architecture. The defined
interface is the USB, and different forms with different functions can be connected to the
computer via USB to improve the function of the system as a whole. A defense example of
modularity is the guided bomb unit (GBU). GBUs are basically a series of modular parts,
including guidance systems, ordnance, and fuses, among others, that can be assembled
from the modules based on the need. Depending on the target and the desired effect,
weaponeers basically build munitions from standard modular parts. There are a number of
different approaches to modularity (Crawley et al., 2004), but all revolve around the same
idea of neatly encapsulating product functions inside aspects of form.

Discussions about modularity usually imply that modularity is beneficial for product
development; however, this is not always the case. Modularity is beneficial if it assists the
product in meeting its cost and performance goals, for example through enabling
commonality, flexibility, or simply neater design with less re-work. Modularity requirements
can be detrimental in applications where performance, space, or weight is at a premium. In
these cases, modularizing the system may introduce unacceptable performance penalties.
For example, an iPhone is a tightly integrated system. The touchscreen and camera are
built into the casing, and the batteries are such an integral part of the unit that they cannot
be separately replaced. This allows the iPhone to be made smaller, but makes it more
difficult to reuse sections of the phone from model to model. Changes to the internal design
between the iPhone 4 and the iPhone 4S meant that the positions of buttons on the case
needed to shift.

This tight interaction, where changes to one part of the product necessitate other
changes, is typical of tightly integrated systems.8 A second example is writing high-
performance software. The use of “libraries” (pre-existing code, the software equivalent of
modules) is minimized, and their functionality often re-written completely in order to optimize
it for a particular application. Only the code absolutely required for the program to run is
included.9

Modularity also shows significant interaction with other architecting strategies,
particularly open architectures. This is because openness usually outsources many of the
design tasks, reducing the ongoing communication between the system architects and the
product design teams, and increasing the risk of integration difficulties. Modularity’s
emphasis on clearly defined interfaces and each module performing a single function
mitigates integration risk, and therefore works well with an open architecture. An example of
modularity and openness working together is the development of apps for smartphones. The
apps are modular add-ons to improve the functionality of the phone and can be developed
by anyone (i.e., a partially open architecture). In the defense context, modularity has been
combined with open systems, which modularity enables. The result is “modular open-
systems architectures.” DoD Directive 5000.1 states that “acquisition programs shall be
managed through the application of a systems engineering approach that optimizes total

8 See, for example, Giffin et al. (2009), who found less change propagation through a system where
“the architecture of [the] system was carefully crafted to be modular from the start.”
9 “In structured software design, functionality and data is arranged in software modules” (Chakrabati,
de Alfaro, Henzinger, Jurdzinski, & Mang, 2002).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 89 -

=

system performance and minimizes total ownership costs. A modular, open systems
approach shall be employed, where feasible” (Wolfowitz, 2007). This is another example of
constructive interaction between two architecting strategies.

Interoperable Architectures

Almost all systems are interoperable with some other systems because nothing
works in absolute isolation. Most electronic devices are interoperable with mains power;
most computers are interoperable with Internet servers; most vehicles are interoperable with
the highway systems in the countries for which they were built. Exceptions to these rules
exist, but only in specialized applications. When we use the word interoperable architecture,
therefore, it is not to describe these common situations where the interoperability is implicit,
but rather to describe systems where the interoperability is a key requirement of the user.

Further, interoperability is what defines systems in the sense that if there is no
interaction, there is no system. If a broader perspective is taken, any product that is
interoperable with another can therefore be seen as simply two parts of a single system. For
example, one type of radio mounted in a ship could be described as interoperable with
another type of radio mounted in an aircraft. Or, a broader system could be considered that
includes both radios, in which case the interoperability is internal to the system. Therefore,
simply depending on where the boundaries of the system are drawn, an interoperable
architecture can refer to interoperability with systems outside the architecture or
interoperability with systems internal to the architecture.

The first view of “interoperable” is used to describe architectures capable of
interfacing with specified systems external to the architecture under consideration, in order
to improve its functionality. This is the usual level of consideration of the architecture and is
the substance of Hagan’s (2009) definition of interoperability:

The ability of systems, units, or forces to provide data, information, materiel,
and services to and accept the same from other systems, units, or forces and
to use the data, information, materiel, and services so exchanged to enable
them to operate effectively together.

Making a system interoperable usually increases the usefulness of that architecture.
For example, designing a radio handset that can use existing waveforms increases the
number of other radios with which it can communicate. The ability to interoperate external to
the architecture under consideration permits wider communication than developing a new,
unique waveform. This would usually make a more useful product than developing a new
radio in isolation.

The second way is a high-level view in which the elements of the architecture under
consideration are themselves interoperable. This second view was referred to as “intra-
operability” by the Open Systems Joint Task Force (2004). For example, in designing a
military communications network like the Joint Tactical Radio System (JTRS), a guiding
principle was that any radio on any platform running the same waveform could
communicate. The JTRS architecture could therefore be described as an interoperable
architecture, with the interoperation occurring within the system. To be more specific, this
high-level view is often used for systems with separate physical elements that communicate
information and where interoperation is not essential to the design. It would not be common
to say that a set of radios designed for use by groups of infantry was an “interoperable
architecture” because radios that are not interoperable with each other are generally
useless. However, in the case of the JTRS, where radios on aircraft could interface with
radios on ships and in the hands of infantry, this was an unprecedented degree of

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 90 -

=

interoperation that was central to the JTRS project. Therefore, describing the JTRS as an
“interoperable architecture” adds information about the central design strategy.

Interoperable architectures also present some disadvantages. The increased cost
and complexity of design involved in making an architecture interoperable should not be
overlooked. In particular, interoperable architectures are difficult to test because the
boundaries of the system under test are often unclear or difficult to simulate in real-world
conditions.

A common issue with implementing interoperability is different implementation of the
standard. An example is the Link-16 standard message set, which has been implemented
differently across various systems, resulting in suboptimal interoperability.

Extensible Architectures

An extensible architecture is one that makes provision for additional elements to be
added in the future. In contrast to a flexible architecture, where the guiding strategy involves
addition and removal as needed, an extensible architecture generally contemplates
permanent additions.10 A striking example of extensibility is the practice of constructing
future on-off ramps at the time of construction of highway overpasses. These “ramps to
nowhere,” which extend only a short distance out from the main bridge, minimize the cost
and disruption of traffic if another road needs to be connected to the overpass at a future
time.

In a DoD context, an example of an extensible architecture is the F-15E Strike Eagle,
which, when it was built, was built and architected to support four radios but was initially
fitted only with two. However, the space, the physical interface, and the interface with the
Operational Flight Program (the software) were all developed and built in at the start. One of
the two remaining slots has been subsequently filled. The disadvantages to the extensible
architecture are primarily the additional up-front expense and time of building in the
extensibility. The extensibility offers an easy target for scope reduction under cost or
schedule pressure. Extensibility can also be difficult to test in complex systems because the
elements to be extended are often not created; therefore, testing the interface under realistic
conditions is difficult. When the government, not the contractor, is the ultimate beneficiary of
the cost savings of a well-engineered extensible solution, there is little incentive apart from
compliance testing to ensure that the extensibility is done well.

Extensibility has a relatively clear definition. It can be distinguished from flexibility
through the permanence of the extensible addition. It can be distinguished from
interoperability because at the time the extensible system is created, the system it will
interoperate with is not yet created. Note that extensibility is very similar to scalability, and
the two are often interchanged. Two criteria to distinguish the terms are proposed here
based on our reading of the nuance in usage between the two, but these are by no means
hard rules. First, extensibility usually refers to a bounded addition, where scalability usually
refers to arbitrarily large increases in quantity. For example, extensibility could be used in
the context of adding a second story to a building or an additional lane to a freeway.
Scalability is more commonly used in information systems when unbounded increases in
quantity are more feasible. For example, in a computer network architecture, a scalable
system indicates the ability to add on more nodes arbitrarily. Secondly, scalability also

10 No satisfying formal definitions of extensibility could be found in the literature, presumably because
the term was widely used and understood. Wikipedia states, without citation in its entry on
extensibility, that “in systems architecture, extensibility means the system is designed to include
hooks and mechanisms for expanding/enhancing the system with anticipated capabilities without
having to make major changes to the system infrastructure.”

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 91 -

=

connotes additions that are similar or common to what already exists, where extensibility
could include provision for something different. For example, an architecture that envisaged
adding a garage to the side of a house might easily be described as extensible but less
comfortably as scalable. The ability to duplicate an existing garage would be easier to
describe as scalable but could probably also be described as extensible.

Summary of Engineering Literature Definitions

The definitions suggested previously are summarized in Table 1, highlighting the
engineering focus of the design strategy, as well as some of the confusing overlaps of the
terminology used to describe the end result. Note that the end goal is always to deliver the
desired performance at required costs, and the architectural strategies should be considered
as a range of tools to achieve that end.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 92 -

=

 Architectural Strategies

Architectural
Strategy

Main Focus Major Benefits Major Drawbacks

Common Parts, rather than
interfaces

Increased life-cycle
affordability

Manufacturability

Reliability

Higher upfront costs

Sub-optimal performance

Modular Interfaces (designed,
minimized, and
standardized)

One-to-one mapping of
function to form

Leads to scalability

Leads to flexibility

Leads to commonality

Sub-optimal performance

Added weight (in some cases)

Adaptable Changes itself based on
variations in the
environment

More affordable than
developing different
products

May improve survivability,
reliability, or other
performance characteristics

Requires well-defined
requirements

May require over-design,
generic components, extra
interfaces

Flexible Gets changed by
people in reaction to
changes in environment

More affordable than
developing different
products

May improve survivability,
reliability, or other
performance characteristics

Requires well-defined
requirements

May require over-design,
generic components, extra
interfaces

Robust Continues to deliver
performance despite
substantial variations in
environment

More affordable than
developing different
products

May improve survivability,
reliability, or other
performance characteristics

Usually more expensive

Lower performance

Interoperable Standardizes interfaces Improves performance

May improve affordability
through reuse of existing
network infrastructure

Effort to correctly interface with
existing systems

Perpetuation of legacy
standards

Open Necessary design
information made public

Encourages innovation that
may improve affordability or
performance

Encourages competition,
which may improve
affordability or performance

Loss of design control,
intellectual property, and
project influence by customer

Extensible Provisions made for
future permanent
additions

Improves affordability,
assuming the extension is
used

Higher upfront costs

Difficult to test in development

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 93 -

=

Selecting and Aligning Architectural Strategies With Acquisition Goals

Equipped with a better understanding of the architectural strategies, we return to the
challenge of how the acquisition community can make sense out of these terms and best
apply an acquisition strategy to achieve the desired end state. The premise of this section is
that some acquisitions are better suited to some architectural strategies.

Against the backdrop of several acquisition reform efforts, including the Weapon
Systems Reform Act of 2009, the 2008 reissuance of DoD Instruction 5000.02 and the
Under Secretary of Defense for Acquisition, Technology, and Logistics (USD[AT&L]) “Better
Buying Power” memorandum (Carter, 2010), understanding the interrelation between
acquisition strategies and architecting strategies becomes increasingly critical. These
reforms place an increased emphasis on the systems engineering phase, as well as focus
on cost performance throughout a program’s life cycle (GAO, 2012). The Weapon Systems
Reform Act of 2009, in particular, places an emphasis on competition throughout the
program life cycle (GAO, 2012). The result of these efforts is that more time and money is
being spent prior to system development or production, and more emphasis is being placed
on competition at all phases, to reduce cost.

Each acquisition is unique. In attempting to give broad guidance to the acquisition
community, this paper focuses on two variables that change how acquisitions are conducted
and which architectural strategies may be most appropriate:11 First, the degree to which
requirements and environment change from the initial planning to the field-conditions of the
system; and second, the number of contractors separately involved in delivering the end
system. We consider a contractor separately involved in the acquisition if it is directly
responsible to the government customer, rather than acting as a subcontractor. Multiple
contractors may be introduced because the system under consideration is too large (in
terms of cost or complexity) to give to a single company or to increase competition in the
procurement process. Deputy Secretary Carter (2010) has already made the point that he
wants increased involvement by a larger number of firms under the theory that it lowers
costs, increases buying flexibility, increases the strength of the industrial base, and leads to
company-driven innovation (in support of competition). The Weapon Systems Reform Act of
2009 requires the use of competitive prototypes prior to systems development to be a part of
the acquisition strategy (GAO, 2012).

These two variables lead us to ask the following two questions for each of the Eight
Strategies:

1. If this architectural strategy is used, how flexible can the procurement be to
changes in the anticipated operating environment and/or requirements?

2. If this architectural strategy is used, how difficult is it to involve multiple,
separate companies?

The results of asking these questions are presented in Figure 1.

11 Of course, other variables may also affect the choice of the architecting strategy, for example, the
remuneration structure of a contract (choosing from fixed-fee, cost-plus, and incentive-fee, among
others). The two variables we chose are not as well controlled by government than many other
factors that affect acquisitions; therefore, the architectural approach needs to be tailored to the
acquisition variables, rather than the acquisition variables being tailored to the architectural approach.
For detailed examples on how acquisition variables could be tailored, assuming a commonality
approach was taken (Wicht, 2011).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 94 -

=

 Architecting Strategies in Context

Figure 1 shows that, depending on where across the spectrum a given procurement
falls, there are generally multiple architecture options that will achieve a good result, but
there are also architectural approaches that are not well suited. The proposed framework
described previously is offered as a starting point for identifying potential architecting
strategies based on where on the spectrum a given acquisition is likely to fall. The
architecting strategy is directly tied to cost-benefit trades for the product, and as a smart
buyer and/or as a systems architect, the government must be aware of these architectural
considerations. A detailed rationale for the position of each entry on the chart in Figure 1
follows.

Conventional, Single-Product Design Strategy. Conventional, single-product
design strategy describes a conventional single product, single contractor development
process where the government specifies the requirements up front and a single contractor
produces the product. It has low tolerance to changes in the initial requirements because the
contractor has no incentive to design outside the requirements given. There are no defined
interfaces at the government-contractor level, which makes simultaneous competition
difficult. The intellectual property usually rests with the contractor, which makes competition
over time difficult. This is the paradigm that the DoD is attempting to leave, but it has a place
in acquisition. For some small, non-complex procurement, it might be the right strategy.

Common Strategy. Common design makes it a little easier to introduce multiple
companies, for example, because a government furnished equipment (GFE) process can be
used across the common elements of the architecture. One company supplies the
equipment, and another uses it in the systems it is developing. However, the common
design is “locked-in,” making it very intolerant to changes in requirements. Any changes
need to be cascaded through two contract mechanisms, between the government and the
GFE supplier, and the contractor building the current system. This increases time and cost.

Interoperable Strategy. The interoperable architecture strategy is intended to allow
multiple different products to interoperate. Therefore, it is helpful for lowering barriers to
involving multiple companies. However, the interoperable standard needs to be defined at
the outset because it defines what aspects of the system must be the same in order to have
interoperability. The standard is effectively common and brings the inflexibility, which is both

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 95 -

=

the strength and the limitation of a standard. The standard is very difficult to update as
requirements change, and systems usually ignore the standard and break the chain of
interoperability in cases of significant requirements change. Note that changing the standard
is not the same as changing other aspects of the elements that interoperate. For example,
an aircraft may be upgraded to fly further in response to evolving requirements, but so long
as the communication system remains unchanged, the interoperability will remain.

Robust, Flexible, or Adaptable Strategy. These design strategies evolved to allow
systems to meet changing requirements, even if the requirements are not known at the time
they are developed. Therefore, the strategies score high on the changing requirements axis.
However, the principles that are used to evaluate robust, flexible, or adaptable approaches
must be applied to the system as a whole, using rigorous system engineering techniques
across the entire end product. This makes it difficult to fragment the system and use multiple
companies.

Extensible Strategy. An extensible architecture builds in allowances for changes in
requirements. However, the changes need to be anticipated at the outset in a way that, for
example, a flexible architecture does not. It is difficult to build an extensible architecture
without an idea of what will be extended. However, building a flexible architecture, such as a
software-defined radio, allows decisions to be made about the changes once the new
requirements are better known, for example, writing new software. Whether an architecture
is extensible does not appear to have a significant effect on the involvement of different
companies in the development of the architecture. Arguably, it makes it slightly easier to
include additional companies if the extension can be “re-competed.” However, in many
cases, the degree of knowledge of the original contractor about the system makes it difficult
for new contractors to be competitive.

Modular Strategy. A modular architecture minimizes the interfaces between parts of
a product or system and groups functional areas together. Therefore, a modular architecture
is more suitable for the involvement of multiple companies because of the ease of
partitioning work packages. A modular architecture also allows aspects of the architecture to
be changed out, if necessary, without redesigning the whole system, which makes it
reasonably tolerant to changes in requirements.

Open Strategy. An open architecture has low barriers to involving multiple
companies. There are fewer intellectual property barriers, and companies are free to submit
bids for pieces of work. An open architecture is ideally changed quickly as requirements
change because there is a short development cycle due to competition and a minimum of
formal requirements. It should be noted that open architectures are heavily dependent on
agreed standards to manage the interfaces between the open development and other parts
of the system. If the requirement changes necessitate changes in the interfaces and
standards, then the benefits of openness to dealing with the requirements change are lost.

The previous analysis suggests that architecting strategies that are chosen largely
on “hard engineering” concerns actually have implications for the cost and other
programmatics of the project, and the architecting community needs to start coming to grips
with which architectures are most useful in which situations. No one acquisitions approach
can be universally applied to all architecting strategies. The architecting strategies suit
different acquisition scenarios, and therefore, much thought should go into which type of
architecting strategy is appropriate for each acquisition. However, due to the overlap of
some architecting strategies, more than one strategy may be successful for a given
acquisition. Figure 1 highlights where those architectures are more likely to be successful

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 96 -

=

choices. This underscores Maier and Rechtin’s (2009) central thesis that “engineering is
more of a science, and architecting is more of an art.”

Summary

The terms we have called architecting strategies in this paper—commonality,
interoperability, modularity, flexibility, extensibility, robustness, adaptability, and modularity—
have all been used at various times as preferred solutions for reducing the cost and
schedule of government acquisitions of complex systems.

There has not been a wide and consistent understanding of the full meaning of these
terms across the acquisition community. In order to use these terms to communicate
approaches and strategies, all personnel involved must share a common understanding of
the terminology. Sections I and II of this paper attempted a first step in this direction by
surveying the literature and engineering practice to arrive at definitions, strengths, and
weaknesses for the architecting strategies. Even with a common understanding of the
strategies, a second danger presents itself. That danger lies in a belief that particular
architecting strategies are the solution for all acquisitions. In fact, as Section III of this paper
showed, some architecting strategies are better suited to particular acquisition scenarios
than others. Understanding the interconnections between the architecting strategies and
acquisition scenarios is essential to making the right decisions at project initiation. The
importance of getting the architecting strategy right, through good communication of ideas
and solid understanding of these interconnections, cannot be overemphasized. As Robert
Spinrad said, “In architecting … all the serious mistakes are made on the first day” (Maier &
Rechtin, 2009). Spinrad was talking about software, but the apothegm applies equally to
other forms of complex systems. Better communication and understanding of terminology
cannot eliminate mistakes altogether, but they represent a good first step.

References
Baldwin, C., & Clark, K. (1999). Design rules: The power of modularity. Cambridge, MA:

Massachusetts Institute of Technology.

Berteau, D., Ben-Ari, G., Hofbauer, J., Sanders, G., Ellman, J., & Morrow, D. (2010, April 20). Cost
and time overruns for major defense acquisition programs. Washington, DC: Center for Strategic
and International Studies.

Carter, A. (2009, July 29). Materiel interoperability and standardization with allies and coalition
partners (DOD Instruction 2010.06). Washington, DC: OUSD(AT&L).

Carter, A. (2010, September 14). Memorandum for acquisition professionals: Better buying power:
Guidance for obtaining greater efficiency and productivity in defense spending. Washington, DC:
OUSD(AT&L).

Chakrabati, A., de Alfaro, L., Henzinger, T., Jurdzinski, M., & Mang, F. (2002). Interface compatibility
checking for software modules (Vol. 2404/2002).

Crawley, E., de Weck, O., Eppinger, S., Magee, C., Moses, J., Seering, W., … Whitney, D. (2004,
March 29). The influence of architecture in engineering systems. MIT Engineering Systems
Division Symposium.

Defense Acquisition University (DAU). (2013). Terms & definitions. Acquisition Community
Connection. Retrieved from https://acc.dau.mil/CommunityBrowser.aspx?id=22108

deWeck, O., Ross, A., & Rhodes, D. (2012). Investigating relationships and semantic sets amongst
system lifecycle properties (Ilities). Paper presented at the Third International Conference on
Engineering Systems, TU Delft, the Netherlands.

DoD. (2008, December 8). Operation of the defense acquisition system (DoD Instruction 5000.02).
Washington, DC: Author.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 97 -

=

DoD. (2013). F-35. Retrieved from http://www.jsf.mil/f35/f35_technology.htm

Dickerson, C., & Mavris, D. (2010). Architecture and principles of systems engineering. Auerbach
Publications.

Ferguson, S., Siddiqi, A., Lewis, K., & de Weck, O. (2007). Flexible and reconfigurable systems:
Nomenclature and review. Aerospace Engineering, 1–15.

Fricke, E., & Schultz, A. (2005). Design for changeability (DfC): Principles to enable changes in
systems throughout their entire lifecycle, 8(4), 342–358.

Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. (2009, August). Change
propagation analysis in complex technical systems. Journal of Mechanical Design, 131.

GAO. (2009, March). Defense acquisitions: Assessments of selected weapons programs (GAO-09-
326SP). Washington, DC: Author.

GAO. (2011, March). Defense acquisitions: Assessments of selected weapon programs (GAO-11-
233SP). Washington, DC: Author.

GAO. (2012, March). Defense acquisitions: Assessments of selected weapon programs (GAO-12-
400SP). Washington, DC: Author.

Hagan, G. (2009, November). Glossary of defense acquisition acronyms and terms. Defense
Acquisition University.

Held, T., Lewis, M., & Newsome, B. (2007). Speaking with a commonality language: A lexicon for
system and component development. Santa Monica, CA: RAND Arroyo Center.

Held, T., Newsome, B., & Lewis, M. (2008). Commonality in military equipment: A framework to
improve acquisition decisions. Santa Monica, CA: RAND.

Joint Chiefs of Staff. (2010, November 8). Department of Defense dictionary of military and
associated terms (Joint Publication 1-02). Washington, DC: Author.

Maier, M., & Rechtin, E. (2009). The art of systems architecting (3rd ed.).

Moore, J. (2011, March 31). DoD acquisition official: Cost over-runs “intractable” problem.
Government Executive. Retrieved from http://www.executivegov.com/2011/03/dod-acquisition-
official-cost-over-runs-%e2%80%98intractable%e2%80%99-problem/

Open Systems Joint Task Force. (2004, September). Program manager’s guide: A modular open
systems approach (MOSA) to acquisition (Version 2.0).

Peters, K. (2009, March 31). GAO: Staggering cost overruns dwarf modest improvements in Defense
acquisition. Government Executive. Retrieved from
http://www.govexec.com/defense/2009/03/gao-staggering-cost-overruns-dwarf-modest-
improvements-in-defense-acquisition /28872/

Sherborne Sensors. (2013). LSOC/P ‘L’ single axis rugged servo inclinometer, ±1° to ±90°.
Sherborne Sensors. Retrieved from http://www.sherbornesensors.com/
international/products/view/LSOC-P-L-Single-Axis-Rugged-Servo-Inclinometer

Silver, M. (2010). Open collaborative system design: A strategic framework with application to system
biology. Cambridge, MA: Massachusetts Institute of Technology.

Tactical Nav. (2013). Army captain builds iPhone app for soldiers in Afghanistan. Retrieved from
http://www.tacticalnav.com/?press=army-captain-builds-iphone-app-soldiers-afghanistan

Thomke, S. (1997). The role of flexibility in the development of new products: An empirical study.
Research Policy, 26, 105.

Ulrich, K., & Eppinger, S. (2008). Product design and development (4th ed.). Boston, MA: McGraw-
Hill Higher Education.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= - 98 -

=

United Launch Alliance. (2012). Atlas V Modular System for maximum flexibility and reliability.
Retrieved from http://www.ulalaunch.com/site/pages/ Products_AtlasV.shtml

Wicht, A. (2011). Acquisition strategies for commonality across complex aerospace systems-of-
systems. Cambridge, MA: Massachusetts Institute of Technology.

Wolfowitz, P. (2007, November 20). The defense acquisition system (DoD Directive 5000.01).
Washington, DC: DoD.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net=

